Smoothness Properties and Gradient Analysis Under Spatial Dirichlet Process Models
نویسندگان
چکیده
When analyzing point-referenced spatial data, interest will be in the first order or global behavior of associated surfaces. However, in order to better understand these surfaces, we may also be interested in second order or local behavior, e.g., in the rate of change of a spatial surface at a given location in a given direction. In a Bayesian parametric setting, such smoothness analysis has been pursued by Banerjee and Gelfand (2003) and Banerjee et al. (2003). We study continuity and differentiability of random surfaces in the Bayesian nonparametric setting proposed by Gelfand et al. (2005), which is based on the formulation of a spatial Dirichlet process (SDP). We provide conditions under which the random surfaces sampled from a SDP are smooth. We also obtain complete distributional theory for the directional finite difference and derivative processes associated with those random surfaces. We present inference under a Bayesian framework and illustrate our methodology with a simulated dataset.
منابع مشابه
Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کاملProperties of Spatial Cox Process Models
Probabilistic properties of Cox processes of relevance for statistical modeling and inference are studied. Particularly, we study the most important classes of Cox processes, including log Gaussian Cox processes, shot noise Cox processes, and permanent Cox processes. We consider moment properties and point process operations such as thinning, displacements, and superpositioning. We also discuss...
متن کاملApplying Spatial Geostatistical Analysis Models for Evaluating Variability of Soil Properties in Eastern Shiraz, Iran
ABSTRACT- The information on the spatial properties of soil is vital to improve soil management and to increase the crop productivity. Geostatistical analysis technique is one of the most important methods for determining the spatial properties of soil. The aim of this study was to investigate spatial variability of soil chemical and physical attributes for field management in eastern Shiraz, I...
متن کاملOn Monte Carlo algorithms applied to Dirichlet problems for parabolic operators in the setting of time-dependent domains
Dirichlet problems for second order parabolic operators in space-time domains Ω ⊂ Rn+1 are of paramount importance in analysis, partial differential equations and applied mathematics. These problems can be approached in many different ways using techniques from partial differential equations, potential theory, stochastic differential equations, stopped diffusions and Monte Carlo methods. The pe...
متن کاملThe Relationship between the Stochastic Maximum Principle and the Dynamic Programming in Singular Control of Jump Diffusions
The main objective of this paper is to explore the relationship between the stochastic maximum principle (SMP in short) and dynamic programming principle (DPP in short), for singular control problems of jump diffusions. First, we establish necessary as well as sufficient conditions for optimality by using the stochastic calculus of jump diffusions and some properties of singular controls. Then,...
متن کامل